首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225017篇
  免费   17614篇
  国内免费   8815篇
电工技术   12233篇
技术理论   24篇
综合类   14132篇
化学工业   37335篇
金属工艺   13036篇
机械仪表   14507篇
建筑科学   17376篇
矿业工程   7392篇
能源动力   6416篇
轻工业   13359篇
水利工程   3544篇
石油天然气   16401篇
武器工业   1650篇
无线电   24882篇
一般工业技术   26832篇
冶金工业   12496篇
原子能技术   2253篇
自动化技术   27578篇
  2024年   404篇
  2023年   3586篇
  2022年   5195篇
  2021年   8481篇
  2020年   6882篇
  2019年   5839篇
  2018年   6588篇
  2017年   7412篇
  2016年   6651篇
  2015年   8807篇
  2014年   11229篇
  2013年   13241篇
  2012年   14242篇
  2011年   15458篇
  2010年   13440篇
  2009年   12694篇
  2008年   12368篇
  2007年   11858篇
  2006年   12372篇
  2005年   10767篇
  2004年   7281篇
  2003年   6215篇
  2002年   5441篇
  2001年   4853篇
  2000年   5362篇
  1999年   6354篇
  1998年   5359篇
  1997年   4388篇
  1996年   4107篇
  1995年   3476篇
  1994年   2782篇
  1993年   1943篇
  1992年   1520篇
  1991年   1203篇
  1990年   921篇
  1989年   723篇
  1988年   528篇
  1987年   325篇
  1986年   264篇
  1985年   188篇
  1984年   130篇
  1983年   98篇
  1982年   119篇
  1981年   97篇
  1980年   68篇
  1979年   36篇
  1978年   26篇
  1977年   20篇
  1976年   35篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
82.
In this study,nitrogen removal performance of the denitrifying ammonium oxidation(DAO)process was investigated when treating sulfamethoxazole(SMX)-laden secondary wastewater effluent.The influent SMX concentration showed negligible effect on efficiencies for removal of nitrate and COD.However,the ammonium ions removal rate was moderately reduced,when the influent SMX concentration in wastewater reached 6 mg/L.Total nitrogen removal efficiency remained as high as 76.77%towards the day 158 at the end of experiment.Candidatus_Brocadia and Candidatus_Kuenenia were the functional anammox strains.The unclassified_f__Rhodobacteraceae sp.was predominant heterotrophic denitrifying strain in the studied reactor.The concentrations of soluble extracellular polymeric substances in sludge obviously increased from 16.76 mg/g VSS to 32.31 mg/g VSS,which might protect the nitrogen removal strains from high-concentration SMX.This result provides a theoretical and technical foundation for the application of denitrifying ammonium oxidation process in treating sulfamethoxazole-laden secondary wastewater effluent.  相似文献   
83.
To gain insight into the ageing behavior of ultrafine grain(UFG)structure,the precipitation phenom-ena and microstructural evolutions of Mg-6Zn-1Y-0.4Ce-0.5 Zr(wt.%)alloy processed by sliding friction treatment(SFT)were systematically studied using hardness texting,transmission electron microscopy(TEM)equipped with high-angle annular dark-field scanning(HADDF-STEM),X-ray diffraction(XRD)and XRD line broadening analysis.The microhardness of the SFT-processed(SFTed)sample initially decreases from 109.6 HV to 104.8 HV at ageing for 8 h,and then increases to the peak-ageing point of 115.4 HV at 16 h.Subsequently,it enters the over-aged period.The un-SFTed sample,as the counterpart,follows a regular ageing behavior that increases from 89.9 HV to 99.6 HV when ageing for 12 h,and then drops.A multi-mechanistic model is established to describe the strengthening due to grain refinement,disloca-tion accumulation,precipitation etc.The analysis reveals that the temperature sensitive UFG structure has an obvious grain coarsening effect,which arouses the soft phenomenon in the early ageing stage.But precipitation hardening provides an excellent hardness enhancement for overcoming the negative influ-ence and helping to reach the peak-aged point.In our microstructural observations,a lot of equilibrium ultrafine MgZn2 precipitates precipitate along dislocations because defects can provide the favorable conditions for the migration and segregation of solute atoms.  相似文献   
84.
The direct-synthesis of conductive PbS quantum dot (QD) ink is facile, scalable, and low-cost, boosting the future commercialization of optoelectronics based on colloidal QDs. However, manipulating the QD matrix structures still is a challenge, which limits the corresponding QD solar cell performance. Here, for the first time a coordination-engineering strategy to finely adjust the matrix thickness around the QDs is presented, in which halogen salts are introduced into the reaction to convert the excessive insulating lead iodide into soluble iodoplumbate species. As a result, the obtained QD film exhibits shrunk insulating shells, leading to higher charge carrier transport and superior surface passivation compared to the control devices. A significantly improved power-conversion efficiency from 10.52% to 12.12% can be achieved after the matrix engineering. Therefore, the work shows high significance in promoting the practical application of directly synthesized PbS QD inks in large-area low-cost optoelectronic devices.  相似文献   
85.
Copper catalysts are widely studied for the electroreduction of carbon dioxide (CO2) to value-added hydrocarbon products. Controlling the surface composition of copper nanomaterials may provide the electronic and structural properties necessary for carbon-carbon coupling, thus increasing the Faradaic efficiency (FE) towards ethylene and other multi-carbon (C2+) products. Synthesis and catalytic study of silver-coated copper nanoparticles (Cu@Ag NPs) for the reduction of CO2 are presented. Bimetallic CuAg NPs are typically difficult to produce due to the bulk immiscibility between these two metals. Slow injection of the silver precursor, concentrations of organic capping agents, and gas environment proved critical to control the size and metal distribution of the Cu@Ag NPs. The optimized Cu@Ag electrocatalyst exhibited a very low onset cell potential of −2.25 V for ethylene formation, reaching a FE towards C2+ products (FEC2+) of 43% at −2.50 V, which is 1.0 V lower than a reference Cu catalyst to reach a similar FEC2+. The high ethylene formation at low potentials is attributed to enhanced C C coupling on the Ag enriched shell of the Cu@Ag electrocatalysts. This study offers a new catalyst design towards increasing the efficiency for the electroreduction of CO2 to value-added chemicals.  相似文献   
86.
The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process. Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information. We demonstrated a parametric indirect microscopic imaging (PIMI) technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution, based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated. The finite-difference time-domain (FDTD) numerical simulation was performed, and the experimental results were compared with atomic force microscopic (AFM) images to verify the resolution improvement achieved with PIMI. This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution, compared with using the conventional optical microscopy, while retaining its advantage of a wide field of view and relatively low cost.  相似文献   
87.
High-density La0.9-xSrxK0.1MnO3 ceramics (LSKMO, A-site = La, Sr and K, 0 ≤ x ≤ 0.25) are successfully fabricated by using facile sol-gel method. Electrical properties are performed by using combination of phenomenological percolation (PP) model, double exchange (DE) mechanism, and Jahn-Teller (JT) effect. Moreover, X-ray diffraction and scanning electron microscopy are employed to analyze the structure and morphology of LSKMO ceramics. Valence states and ionic stoichiometry are assessed by using X-ray photoemission spectrometry. Results reveal that Sr2+ ions, substituting La3+ ions, significantly influenced DE mechanism and JT effect. In addition, Sr-doping plays essential role in improving electrical properties of LSKMO ceramics. At optimal doping content of x = 0.09, peak temperature coefficient of resistance (TCR) of the resistivity is found to be 11.56% K?1 at 297.15 K, which is optimal TCR for A-site K-occupied perovskite manganese oxides. These results confirm that polycrystalline LSKMO ceramics render high room-temperature TCR values due to Sr-doping.  相似文献   
88.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
89.
The strengthening method of multi-element M-site solid solution is a common approach to improve mechanical properties of MAX phase ceramic. However, the research on capability of multi-element A-site solid solution to improve mechanical properties has rarely been reported. Thereupon, quasi-high-entropy MAX phase ceramic bulks of Ti2(Al1?xAx)C and Ti3(Al1?xAx)C2 (A = Ga, In, Sn, x = 0.2, 0.3, 0.4) were successfully synthesized by in situ vacuum hot pressing via multi-elements solid solution. The multi-elements solid solution in single-atom thick A layer was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy as well as by energy dispersive X-ray spectroscopy mappings. Effects of doped multi-elements contents on the phase, microstructure, mechanical properties, and high temperature tribological behaviors were studied. Results demonstrated that the Vickers hardness, anisotropic flexural strength, fracture toughness, and tribological properties of Ti–Al–C based MAX ceramics could be remarkably improved by constitution of quasi-high-entropy MAX phase in A layers. Moreover, the strengthening and wear mechanisms were also discussed in detail. This method of multi-element solid solution at A-site provides new way to enhance mechanical properties of other MAX phase ceramics.  相似文献   
90.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号